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We show theoretically that weak �Josephson� coupling between two localized Bose-Einstein condensates of
exciton-polaritons may induce the vector polarization locking in the system. Polarization correlations between
two condensates appear if the lifetime of polaritons is long enough to allow for the efficient spin relaxation.
The correlations are suppressed by local effective magnetic fields originated by strain or photonic disorder.
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I. INTRODUCTION

A microcavity polariton is a superposition of a confined
photon and a Wannier-Mott exciton in a Fabry-Perot micro-
cavity containing a semiconductor medium.1 The composite
nature of polaritons results in a small effective mass and
short lifetime due to the photonic component while the exci-
tonic component results in effective polariton interactions/
scatterings with other excitations of the medium �e.g., other
polaritons, phonons�. These factors combine to allow for the
Bose-Einstein condensation �BEC� of polaritons at extremely
high critical temperatures relative to other condensate form-
ing systems.

Recent experimental work has led to the realization of
polariton BEC at room2 and cryogenic temperatures.3,4 BEC
can be characterized by its complex order parameter, ��r�
=���r�ei��r�, associated with the macroscopic condensed
wave function and defined in terms of the condensate density
� and a well-defined phase �. BEC is a symmetry-breaking
phase transition with � being chosen spontaneously by the
system. In this work we use the kinetic theory of spontane-
ous formation of the order parameter.5 We demonstrate that
the buildup of a stochastic polarization above threshold is
directly proportional to a buildup in the condensate order
parameter. This allows for an experimentally simple mea-
surement of the spontaneous symmetry breaking required for
BEC through polarization measurements. The polarization
buildup is accompanied by appearance of spatial correla-
tions, g�1��r ,r��, proposed as the criterion for BEC phase
transition.6 We argue that the measurement of a spontaneous
stochastic polarization may be a more stringent criterion in
realistic microcavities. Indeed, spatial coherence can be as-
sumed in systems such as micropillars7 and is likely a feature
of localized condensates in planar microcavities once the las-
ing threshold is surpassed,2 making it an unsuitable criterion
for defining the phase transition. The spontaneous polariza-
tion build up defines BEC in localized condensates where the
spatial coherence can be formed prior to the order parameter
formation.

In recent experiments, it has been shown in the near-field
emission profile that multiple condensates are formed within
the microcavity sample.8 A buildup of long-range spatial co-
herence and uniformly oriented emission polarization across

the spatially separate condensates is seen above threshold.
This implies a coupling between the condensates. We pro-
pose that the dc Josephson effect,9,10 when applied as an
extension to the kinetic model, can successfully account for
this coupling and explain the polarization locking and spatial
coherence buildup in the system. Furthermore, through the
symmetry-breaking effect of differing local fields for each
condensate �e.g., produced by local strains at different re-
gions of the sample� the polarization locking can be affected
through field orientations.

The Josephson effect was predicted and observed for two
superconductors separated by a thin insulating layer. It was
later discovered for superfluid helium11 and interacting
atomic condensates.12 Theoretical work has recently been
published describing the polarization dynamics of a pair of
fully correlated polariton condensates13 and the phase corre-
lation of Josephson-coupled condensates as a function of
detuning.14 The difference in respect of both these works is
that we take into account the stochastic nature of BEC for-
mation and examine the buildup of polarization correlations.
We assume the condensates are not detuned from each other
and therefore are in the steady-state regime as described in
Ref. 14.

II. FORMALISM

We consider BEC into two spin degenerate spatially sepa-
rated ground-state levels from one incoherent reservoir of
polaritons. In general, the semiclassical Boltzmann equation
needs to be solved to determine the population of noncon-
densed states, however, we adopt a simple model where all
noncondensed polaritons, Nr�t�, are treated as equivalent and
belonging to a single reservoir with a population time depen-
dence

dNr

dt
= − �rNr − W�t��n�t� + 1� + P�t� . �1�

Here �r is the polariton decay rate in the reservoir, W�t� is
the income rate for which we have assumed the scattering
mechanism is predominantly polariton phonon and therefore
takes the form W�t�=rNr�t�, where r is the condensation rate,
n�t� is the full instantaneous populations of two condensates,
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and P�t� is the pump. We model a pulsed pump and assume
a pulse length much shorter than the condensate lifetime al-
lowing us to take P�t� as an initial condition. We assume the
reservoir is completely depolarized, due to rapid spin-
relaxation processes.

The dynamics of the two-condensate order parameter,
�i��t�, where �=� denotes the two spin �circular-
polarization� components of the order parameter and i=1,2
labels the two condensates, is described by the Langevin-
type equation,5

d�i�

dt
=

1

2
�W�t� − �c��i� + 	i��t� −

i




�H

��i�
� − �Ri�, �2�

where �c
−1 is the polariton lifetime in the condensate, 	i��t� is

the noise defined by correlators15

�	i��t�	i����t��� = 0, �3�

�	i��t�	i���
� �t��� = �1/4�W�t��ii�������t − t�� . �4�

The third term on the RHS of Eq. �2� describes the Hamil-
tonian dynamical effects due to the spin splitting, the Joseph-
son coupling between two condensates, and the spin-
dependent polariton-polariton interactions,

H = Hs + J�
�

��1�
� �2� + �2�

� �1�� +
1

2�
i�

�1	�i�	4

+ 2	�i�	2	�i�̄	2� , �5�

where the spin-splitting part Hs will be defined later, J is the
strength of coherent hopping between the condensates �sen-
sitive to the condensate separation and the confining poten-
tial�, and 1 and 2 are the on-site interaction constants of
polaritons with parallel and antiparallel spins, respectively.
The final term accounts for the spin relaxation of the con-
densate. We take a Landau-Khalatnikov16 approach and
therefore Ri�=�H /��i�

� . A schematic of this coupling can be
seen in Fig. 1. A more detailed background is given in Ref. 5.

We solve the system of Langevin equations coupled to the
Boltzmann reservoir numerically using a fifth-order Adams-
Bashforth-Moulton predictor corrector method. We first
present the results for the situation where there are no effec-
tive magnetic fields, i.e., Hs=0.

III. POLARIZATION CORRELATION AND PHASE
COHERENCE

From polarization-resolved photoluminescence experi-
ments the condensate Stokes parameters, or the components
of the pseudospin vector S, are directly accessible. The pseu-
dospins can be written using the Pauli matrices � as

Si = �1/2���i
† · � · �i� , �6�

where we define spinors �i= ��i+ ,�i−�T. In the calculations,
the time averaging will be taken over numerous realizations
of noise, and this is denoted by angular brackets as in Eq.
�3�. The numerical parameters used in calculations are �c
=0.5 ps−1, �r /�c=0.01, 1=1.8 �eV, 2 /1=−0.1, �
=1 meV−1 ps−1, J=10
�r, and r=10−4 ps−1. The value of J
varies in large limits as the distance between two conden-
sates changes. It ranges from 0 �corresponding to the infi-
nitely remote condensates� to about 1 meV, which is the
characteristic localization energy of a condensate of exciton-
polaritons. We have taken J=0.03 meV, which is two orders
of magnitude less than the localization energy. The corre-
sponding tunneling time between two condensates is about
20 ps, which is an order of magnitude longer than the
exciton-polariton lifetime. This is a characteristic value for
the weak-coupling regime of two condensates corresponding
to a spatial separation on the order of several micrometer.

The most convenient way to evidence locking of random
polarizations generated by the two localized condensates is
by direct measurement of the two-emitter polarization cor-
relator

Scorr�t� =�
� �S1�t�S2�t��
	S1�t�		S2�t�	�
 , �7�

where the denominator represents normalization by the con-
densate populations. Scorr�t� changes between 0 for uncorre-
lated polarizations and 1 for full correlation. It can be calcu-
lated for different values of P / Pth, where Pth is the threshold
pump determined by income and outcome rates of polaritons,
i.e., Pthdt=�c /r. The results of these calculations are shown
in Fig. 2 with the time resolved, ensemble averaged, popu-
lation of the condensates �the population of each condensate
is virtually identical as relaxation from the reservoir is
equally probable�.

During the condensate formation, the polarizations and
phases �i�=arg��i�� of the condensates are stochastically
chosen. The relationship between the two phases is an im-
portant quantity as correlations would evidence the buildup
of spatial coherence. To explore this relationship we look at
the phase difference between the components of the order
parameter, �2�−�1�. The probability density for this quan-
tity is shown in Fig. 3 at three different times above thresh-
old pumping.
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FIG. 1. �Color online� Schematic of polariton system showing
the polariton dispersion in k space �left� and the real-space layout of
two Josephson-coupled condensates with a separation of �x �right�.
The scale for E is not the same for both diagrams. Both ground-
state condensates are fed by a common reservoir with Nr�t� polari-
tons on the excitonlike part of the dispersion and are Josephson
coupled with coherent hopping parameter J.
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When the condensate occupation is less than 1 the prob-
ability density as shown in Fig. 3 is that of the difference
between two uniform random variables spanning the interval
−� to �. During the period of significant population �as can
be seen in Fig. 2�b�� the condensates have the greatest prob-
ability of assuming phase differences of � or −�, which are
equivalent. We believe this phase difference is due to the
rotation of the order parameter from the Josephson coupling.
As we are dealing with a stochastic process either condensate
1 or 2 will breach threshold occupation first and as the Jo-
sephson coupling enters our system as an imaginary term this
acts to shift the phase of the later forming condensate. This
shift is by a factor � /2. Once the later forming condensate
becomes macroscopically occupied it acts in the same way
on the initially formed condensate and we see a total phase
difference of � or −�. Although not shown in Fig. 3, once
the condensate occupation has decayed below 1 �for t
�60 ps� the distribution reverts to the same form as at t
=1 ps. A figure identical to Fig. 3 is obtained for the minus
circularly polarized components of the condensates.

Below threshold no correlations are seen between the con-
densates, also the total polarization degree of the conden-

sates, which is directly proportional to their order param-
eters, is close to zero. There is no macroscopic population of
the condensate as can be seen in Fig. 2 and therefore no
Josephson current between them.

Above threshold the condensates populate macroscopi-
cally with a narrowing of the emission peak with increasing
pump power. The polarization degree approaches 1 �without
polariton-polariton interactions it reaches 1 for all values of
pump, however, when they are included a gradual decrease is
seen above threshold5� indicating a clear spontaneous sym-
metry breaking, the “smoking gun” for BEC. The polariza-
tion correlator increases with increasing pump to a maximum
value of Scorr�t��0.75. This evidences the polarization lock-
ing of the two condensates due to the dc Josephson effect.
Importantly, the lifetime of the correlation is roughly con-
stant regardless of pump power, in opposition to the conden-
sate occupations. This indicates that any macroscopic popu-
lation of the condensates is enough for a significant
polarization locking effect between them. The spatial coher-
ence builds up in a similar way, as evidenced by the results
in Fig. 3. This shows that the spatial coherence and sponta-
neous polarization both carry information on the order pa-
rameter of BEC. In systems of large size the buildup of spa-
tial coherence and of spontaneous polarization equally
characterizes the BEC threshold. However, in small systems
like pillar microcavities, phase correlations are present both
below and above threshold, so that the spontaneous polariza-
tion remains the only direct measure of the order parameter.

IV. INTRODUCING EFFECTIVE MAGNETIC FIELDS

In experimental microcavity samples local strain effects
and inhomogeneous photonic disorder produce effective
magnetic fields acting on the pseudospins of polaritons. An
effective magnetic field of these origins splits the linearly
polarized states of the condensate. If the two condensates
experience the same splitting frequency �, but the fields are
oriented differently, the splitting Hamiltonian is given by

Hs = − 
���c1S1� + �c2S2�� , �8�

where unit vectors c1,2 define orientations of the fields.
The introduction of the local fields modifies the distribu-

tion function of the condensate polarization as seen in Fig. 4.
In this figure, points show the time-averaged values of the
Stokes vector of the condensates for different realizations of
the Langevin noise, corresponding to different excitation
pulses. Here the splitting favors polarizations in the positive
x and y directions for condensates 1 and 2, respectively. The
splitting leads to a bias in the time-integrated values of the
polarization and results in frustration of polarization locking.
As expected this produces a reduction in the polarization
correlation. The fields also introduce a bias in the phase re-
lationship between the two condensates. �2�−�1� becomes
locked to either � or −� depending on the pinning, which
indicates that an antisymmetric solution for two Josephson-
coupled condensates corresponds to the minimum energy.

FIG. 2. �Color online� Below and above threshold time dynam-
ics of the �a� polarization correlator defined by Eq. �7� and �b�
condensate occupation. The polarization correlations are seen as
long as the condensates are macroscopically occupied. The maxi-
mum degree of correlation is dependent on the condensate
occupation.
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FIG. 3. Probability density of phase difference between the two
condensates at times before and during macroscopic occupation.
For all times P / Pth=3.0.
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V. SLOW ENERGY RELAXATION OF CONDENSATE

We now consider the case where energy relaxation is slow
and can be neglected over the lifetime of the condensate. To
describe this regime we remove the final term of Eq. �2�.
Here the polarization correlation is not observed below or
above threshold. This can be illustrated by considering the
states 1 and 2 when the polaritons are condensed. If there is
no tunneling between the states �J=0� then the order param-
eters are uncorrelated, ��1

† ·�2�=0. One can show that any
linear combinations of �1 and �2, �1=u11�1+u12�2 and �2
=u21�1+u22�2, are also uncorrelated provided the u coeffi-
cients form a unitary matrix.17

If Josephson tunneling is turned on, J�0, the result is
unchanged. In particular, symmetric and antisymmetric states

��1��2� /�2 are uncoupled and therefore uncorrelated. The
unitary transformations of these states, in particular, �1 and
�2 are also uncorrelated. Physically it means that any com-
bination of the condensates wave functions can be spontane-
ously formed. The role of relaxation is to bring the system
into a particular state that minimizes the Hamiltonian energy,
e.g., into the antisymmetric ��1−�2� /�2 state. No correla-
tions are seen when the system randomly occupies symmet-
ric and antisymmetric states, but they appear if the system
relaxes into, e.g., an antisymmetric state. This theoretical ar-
gument is corroborated by numerical results.

VI. CONCLUSION

We have described theoretically the process of polariza-
tion locking over spatially separated polariton condensates
by a Josephson coupling mechanism. The effect manifests
itself as an increase in the two-emitter polarization correlator
above threshold pumping power for a pulsed setup. A signifi-
cant effect is seen at all times when the condensates are
macroscopically occupied. Correlations are seen between the
condensate phases showing the buildup of spatial coherence
across the sample. We take into account the effect of differ-
ently oriented local effective fields acting on the condensates
and see the frustration of correlations due to the polarization
pinning. The presence of energy relaxation is shown as nec-
essary for correlations to exist. These results show that the
buildup of common vector polarizations can be considered as
a criterion for appearance of a macroscopically coherent state
in a system of localized polariton condensates. This criterion
is as strict as the appearance of spatial coherence in a large-
size system and becomes more rigorous than the spatial co-
herence criterion in the case of strongly localized conden-
sates.
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